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Abstract 

There must be an adequate integration of well and seismic 
data to create a reliable facies model. However, 
heterogeneous rocks, lack of data and inaccurate 
information accumulate uncertainties for model 
characterization. Here we seek to simulate a scenario 
where there are few wells and only one seismic data to 
create the facies model. The main goal is to estimate the 
predominant lithology distribution with fluid information. 
This strategy can help in new wells' locations and reducing 
the risk of false discoveries. The Norne field located on the 
Norwegian Sea will be used as an example for this 
methodology. Machine learning techniques have been 
commonly used for automation and task optimization 
processes. We show that these methods can achieve high 
performance when receiving proper processed data. The 
summarized workflow can be described in two stages: 
electrofacies classification on eight different wells and use 
of these facies as labels for classification on the field's 
seismic volume. The results indicate accuracy close to 
90% both in well and seismic scenarios. The facies model 
with lithofluid information is still compared with the 
reservoir simulator from the same period to show the high 
similarity. 

 

Introduction 

Seismic facies can be considered as classes that contain 
similar characteristics of seismic reflectors, varied 
attributes and spatial distribution (Conticini, 1984; John et 
al., 2008). The estimation of these facies can be difficult 
due to the low quality of seismic resolution, the lack of 
important seismic data for processing steps or even the 
geological complexity of the reservoir. For this reason, the 
aid of petrophysical data can help the creation of a more 
realistic facies model (Saussus and Sams, 2012). 

Some studies use the aid of seismic attributes (e.g. P wave 
impedance, S wave impedance and density) from inversion 
to generate the facies model in the reservoir through 
classification (Roncarolo & Grana, 2010; Grana, 2016; 
Tellez et al., 2017). Since elastic inversions provide only 
information about the seismic bandwidth, some studies 
avoid this problem by combining the inversion with the low 
frequency model, in addition to petrophysical information, 

for the construction of the facies model (Sams & Saussus, 
2013; Zabihi Naeini & Exley, 2017). 

Our study addresses the estimation of the facies model 
with lithofluid distribution throughout the reservoir, with the 
aid of well data, low frequency seismic models and 
machine learning classification algorithms. The 
methodology developed in this work will be applied to the 
Norne field, from offshore Norway, between 2001 and 
2006, when the field reached its oil production peak and 
water production increased considerably, making it crucial 
to identify unswept oil zones and oil-water contact (OWC). 

The Norne field had many works published in the last 
decade regarding reservoir characterization 
(Rwechungura et al., 2010; Chen & Oliver, 2014; Møyner 
et al., 2015; Correia & Schiozer, 2016). One of the main 
problems related to reservoir characterization in the Norne 
Field is the discrimination of lithofacies since the reservoir 
presents a complex geological setting that goes from 
shallow-marine and deltaic sands from the Fangst Group 
(Middle Jurassic) to heterolithic tidal units of the Tilje 
Formation from the Båt Group (Early Jurassic) (Dalland et 
al., 1988; Hammer et al., 2010). 

The reservoir quality in the Norne field can be affected by 
thin clay layers interbedded with the sandstones of interest. 
The correct identification of these facies would help to 
estimate zones of better reservoir quality. Like these clay 
layers, there are dolomitized limestone strata between the 
geological formations acting as stratigraphic barriers, 
restricting the vertical flow of fluids (Verlo & Hetland, 2008). 
The recognition of these seals is essential to determine 
better strategies for well location and defining perforation 
zones (injection and production). 

More specifically, we propose using machine learning to 
provide accurate results to estimate the fluids contact and 
evaluate the potential distribution of relevant facies such as 
shales and limestones that might compromise the flow in 
the reservoir, all in 3D seismic scale level of detail. These 
results allow the engineers to strategically optimize the 
wells’ locations to increase production while reducing the 
risk associated with false hydrocarbon discoveries and infill 
drilling. The idea is to emulate a situation with minimal 
dataset available such as a 3D seismic volume and a few 
wells, which might be the case for small companies and 
researchers. 

Study Area 

Norne field is situated in a horst block on the Norwegian 
Continental Shelf. It has dimensions of 9 x 3 km and its 
thickness ranges between 120m and 260 m. Two 
hydrocarbon compartments divide the field: Main Structure 
(segments C, D and E) and Northeast Structure (segment 
G) (Figure 1a).  
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The field has jurassic sub-arkosic sandstone reservoir that 
can be divided into four distinct formations: Not 2, Ile, Tofte 
and Tilje (Figure 1b). The gas is predominantly in the Not 
2 Formation and 80 % of the oil is found in the Ile and Tofte 
formations (Rwechungura et al. 2010). Along the field, 
different stratigraphic barriers act as seals. The main one 
is the Not 1 Formation, a clay layer of approximately 10 m 
thickness that prevents communication between Not 2 and 
Ile. Dolomitized carbonate layers about 3 m thick are also 
identified and prevent the vertical flow of fluids between 
different units (Verlo & Hetland, 2008). 

 

Figure 1 – a) Norne field location and spatial 
representation of its segments (Maleki et al., 2018). b) 
Summarized stratigraphy. 

 

Method 

The workflow integrates well information and post-stack 
seismic data to solve the problem of facies inference in the 
seismic domain, which results in a lithofluid facies model 
(Figure 2). 

 

Figure 2 - Workflow used to classify lithofluid facies 
present in the reservoir. 

 

Well data analysis and processing 

Among 49 available wells, only eight were used due to the 
necessary correlation of their properties with seismic 
parameters (P and S wave velocities and density) (Figure 

3). Only four of these eight wells have reliable electrofacies 
information from the composite logs present in the reports. 
Wells B-4H and D-4H compose the training data, where 
15% represent the test set. The wells C-1H and E-3H are 
considered as the validation data to measure the algorithm 
performance. After a satisfying accuracy is achieved, the 
classification expands to the remaining four wells and the 
fluid contacts from the reports are compared to the 
predicted electrofacies. The facies used are Gas Sand, Oil 
Sand, Brine Sand, Shale (including Claystone and 
Siltstone) and Limestone. 

 

Figure 3 - Well position along the field with their respective 
fluids and drilling year. 

 

From the available logs, the following were chosen to be 
used during the classification: bulk density (RHOB), 
neutron porosity (NPHI), water saturation (SW), 
permeability (KLOGH) and shale volume (VSH). Two more 
logs, created from S-wave and P-wave velocities, were 
also used and will be called relative Vp and relative Vs. 
These new logs indicate the variation of these two 
properties from a zero-mean and, thus, would better 
represent the real geological variations. 

It is likely that the sampling of the wireline logs, 12.5 cm, 
does not correctly identify transition regions from one 
lithology to another. Then, two samples between 
lithological limits are removed from the training wells to 
decrease this uncertainty in the model. 

After prediction, if all samples have a unique type of facies 
(e.g. Shale) and there is only one different between them 
(e.g. Limestone), it could represent an error in the 
classification. It might be acceptable to believe that this is 
a punctual outlier and that the correct prediction would be 
of the dominant facies (Bestagini et al., 2017). Therefore, 
it was decided to use the prevailing type of facies around 
to replace this outlier, when there is just one sample of it. 

Extreme Gradient Boosting (XGBoost) 

This study performs electrofacies classification by the 
XGBoost algorithm. It uses ensembles of decision trees 
(boosted trees) that create weak models and each model 
tries to correct the errors present in the previous one 
(Dietterich, 1999). This process continues until the 
prediction is made correctly or a maximum number of 
models are added. Developed by Chen & Guestrin (2016), 
XGBoost has stood out in researches that address 
classification problems. (Torlay et al., 2017; Zhang et al., 
2018). 
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XGBoost performs gradient boosting and it is essential to 
avoid data overfitting. The new model is updated with the 
latest prediction, minimizing the objective function using 
gradient descent (Friedman, 2001; Chen & Guestrin, 
2016).  

Fluid Substitution 

As production progresses, the pattern of fluid distribution in 
the reservoir is modified and the properties originally 
captured by the well logs may not exactly represent the 
current characteristics of the reservoir. In order for the 
information extracted from the wells to be used, 
Gassmann's (1951) fluid substitution routine must be 
applied so that the logs can be updated and effectively 
represent the reservoir properties for the desired time. 
Information on the distribution of saturation and pressure 
in the wells for the time of interest is obtained with the help 
of a reservoir simulator software. 

This study performs fluid substitution only in the sandstone 
samples since shale and carbonate are seals and their fluid 
content does not change. So before making the 
classification in the seismic data, the RHOB, SW, Vp and 
Vs logs of each well were updated to the time of interest, 
established in this work as of August 2006. Then, the same 
electrofacies classification model was used, with the two 
training wells (B-4H and D-4H) in their original 
configurations, to estimate the electrofacies in the eight 
updated wells for the new fluid distribution scenario. 

Facies classification in the seismic domain 

To implement the facies classification on the reservoir 
volume, velocity and density models are needed. In this 
study, the AVO inversion did not show reliable results, so 
it was preferred to build these models using a well log 
interpolator that can follow the interpreted seismic 
geometry. This approach uses a seismic interpretation 
software to combine well log data (Vp, Vs and density) and 
a horizon cube, which generates automatic interpretation 
of seismic horizons. The process results in low frequency 
velocity and density models. 

These new properties (Vp, Vs and density) become the 
features of the classification model, in the position of the 
well tracks in the seismic cube. And the electrofacies from 
the classification of the wells after fluid substitution are 
considered as the label. Still, 30% of this data is separated 
as a test set to evaluate the model accuracy. The 
classification uses the Extra-Trees method and is applied 
over low frequency Vp, Vs and density of the whole seismic 
cube. 

Extremely Randomized Trees (Extra-Trees) 

The Extra-Trees method also uses ensembles of decision 
trees as the XGBoost algorithm described before. Its main 
differences from other ensembles methods are the addition 
of total randomness to define the features and its 
respective cut-points in node splitting, as it uses all the 
samples during the training to build the trees (Geurts et al., 
2006). These conditions help to reduce the variance of the 
model, in exchange for an increase of bias (Géron, 2017). 
Therefore, the randomness of trees tends to increase the 
accuracy, since the error in the prediction that each tree 

provides tends to be uncorrelated to each other (Breiman, 
2001). 

Performance metrics 

- Accuracy: prediction evaluation criterion where precision 
is estimated by the number of samples correctly classified 
divided by the total number of samples for each well. 

- Confusion matrix: also used to evaluate the performance 
of the electrofacies classification. In a matrix C, the 
notation Ci,j represents the number of real class i and 
predicted class j observations. In the case of binary 
classification, for example, the count of true negatives is 
C0,0, false negatives C1,0, true positives C1,1 and false 
positives C0,1 (Figure 4) (Pedregosa et al., 2011). 

 

Figure 4 - Demonstration of how a confusion matrix works. 
Blue colors represent correct predictions and red ones 
represent errors. 

 

Results 

First, the electrofacies classification on the test data (15% 
of the samples from the training wells) achieved an 
accuracy of 87%. After that, the model reproduced the 
classification on the two validation wells (C-1H and E-3H) 
and the result was compared with their true facies (Figure 
5). The XGBoost algorithm showed similar performance for 
both wells, achieving an accuracy of 87% and 89% in C-
1H and E-3H, respectively. Similar precision values in the 
test and validation data indicate a good generalization of 
model prediction, which is ideal to avoid overfitting. 

 

Figure 5 - Electrofacies classification on the two validation 
wells, C-1H and E-3H. 

 

 

    Predicted Class 

    Positive Negative 

True Class 

Positive True Positive False Negative 

Negative False Positive True Negative 
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In general, the process was quite robust for most of the 
facies, although the model showed some difficulty in 
correctly predicting Limestone (Figure 6). Similar values of 
RHOB, KLOGH, and SW can explain the tendency to 
confuse these facies with Shale. On the other hand, there 
is high accuracy for Sandstone variations, which is relevant 
since it is considered as the reservoir and zone of greatest 
interest. 

Figure 6 - Normalized confusion matrices of wells C-1H 
and E-3H, respectively. 

 

After concluding that the testing and validation steps were 
satisfactory, the classification was made on the blind wells 
(B-4AH, C-3H, C-4AH and F-1H), which have no lithology 
information. The results were then compared to the fluid 
contacts obtained in the reports as a performance metric 
(Figure 7). It is noticed that the position of these contacts 
agrees with the inference of facies with fluid information. 

It is also worth noting that the facies estimated for wells C-
4AH, E-3H and F-1H, which do not have all three types of 
fluid, maintained the predominance of this fluid information 
even though the model was trained with gas, oil and water 
sands. For example, the well report shows that F-1H has 
only water in its rock pores; therefore, the fact that there is 
no predicted sand with gas or oil in this well proves that the 
classification has preserved these relevant characteristics. 

Eight wells underwent fluid substitution to conform these to 
the seismic period, 2006, after the quality and robustness 
of the model had been proven. The classification on the 
seismic volume also shows high accuracy on the test data 
(30% of the original data), reaching about 94% of 
correctness. There is a high similarity in the distribution of 
fluids when compared with the reservoir model of the same 
year from the simulator (Figure 8). 

There are overestimated gas and oil when looking at the 
lithofluid estimation in the G segment. This answer is not 
surprising, as the hydrocarbon in the G segment has a 
higher viscosity and density than the rest of the reservoir 

due to the absence of communication between these 
compartments (Verlo & Hetland, 2008; Maheshwari, 2011). 
As none of the wells used in the model is part of the G 
segment, there is high uncertainty in that region due to the 
lack of petrophysical information. Thus, the properties 
captured by the wells in the rest of the reservoir may not 
represent the fluid properties of that segment. 

Another relevant aspect is the identification of the Not 1 
clay layer over a large part of the reservoir, between the 
units with gas and oil. When consulting the literature, it is 
known that this layer has high importance for the field, as 
it acts as a stratigraphic barrier to the vertical flow of fluid 
between formations. It is also worth noting the recognition 
of facies heterogeneity in the lower portion of the reservoir, 
represented by the well-known Tilje heterolytic formation 
(Figure 9). We note that the classification on the low-
frequency model has some similarity with the model 
resulting from the inversion. However, the latter presents 
more noise and highlights less the continuity of facies 
along the field, which may add imprecision to a future 
interpretation. 

 

Conclusions 

The facies classification for the Norne field proved to be 
quite relevant due to the automation of the facies 
interpretation process and the estimation of lithofluid 
contacts. We also showed that stratigraphic barriers can 
be identified, although thinner ones tend to be more 
challenging due to the lower resolution of the 3D model in 
seismic. 

The accuracy close to 90%, both in well and seismic 
scenario, proved that these tools can be quite powerful 
when aligned with the proper processing of your data and 
the choice of powerful algorithms. The similarity between 
the final reservoir classification and the reservoir simulator 
in the same year shows that this process can be of great 
help. This application in a larger data set with more 
relevant information available, as pre-stack seismic and 
more wells, could assist the interpreter's work even more. 
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Figure 7 - Electrofacies classification on the four blind wells, that had no previous label information. The solid lines represent 
stratigraphic tops and the dashed lines show the original lithofluid contacts depths from the reports. 

 

 

Figure 8 - a) Low-frequency 3D model with lithofluid facies classification for Norne field in 2006. b) Fluids representation 
according to their respective saturations from the simulator in 2006. 

 

 

Figure 9 - Section along the reservoir with facies classification on low-frequency model (top) and inversion model (bottom). 
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